7.5 The Heat Conduction Problem

We sonsider a homogeneous rod of length 1 . The rod is suffiently thin so that the beat is distributed equally over the cross seetian at time t. The surfoce of the rod is insulated, and therefore, there is no heat loes through the boundary. The tempenture distribution of the rod is given by the golution of the initial boundary-value problem

$$
\begin{array}{rll}
u-k w_{r x}, & 0<x<l, & t>0, \\
u(0, t)-0, & t \geq 0, \\
u(t, t)-0, & t \geq 0, \tag{7.5.1}\\
u(z, 0)-f(z), & 0 \leq z \leq 1 . &
\end{array}
$$

If we sesume a solution in the form

$$
w(x, t)-X(x) T(t) \neq 0 .
$$

Equation (7.5.1) yields

$$
X T^{\prime}=\mathrm{k} X^{\prime \prime} T
$$

Thus, we have

$$
\frac{X^{\prime \prime}}{X}=\frac{T^{\prime}}{k T}=-x^{2}
$$

where a is a positive constant. Henes, X and T must satisfy

$$
\begin{align*}
& x^{\prime \prime}+a^{2} x=0 \tag{7.5.2}\\
& T^{\prime \prime}+a^{2} k T=0 \tag{7.5.3}
\end{align*}
$$

From the bounday conditions, we have

$$
u(0, t)-X(0) T(t)-0, \quad u(t, t)-X(0) T(t)-0 .
$$

Thus,

$$
x(0)-0, \quad x(0)-0
$$

For an arbitrary function 'T' (t). Hence, we must solve the eigensalue problem

$$
\begin{aligned}
x^{\prime \prime}+a^{2} X & =0, \\
x(0) & =0, \quad x(0)=0 .
\end{aligned}
$$

The solution of equation (7.5.2) is

$$
X(x)=A \cos a x+B \sin a x
$$

Since $X(0)=0, A=0$. To satisfy the second condition, we have

$$
X(D)-E \sin \alpha=0 .
$$

Since $B=0$ yields a trivial solution, we must have B p 0 and henes,

$$
\sin a!=0 .
$$

Thus,

$$
a=\frac{n \pi}{1} \text { for } n=1,2,3 \ldots
$$

Substituting these eigensilues, we have

$$
X_{\mathrm{n}}(\mathrm{x})=B_{\mathrm{n}} \sin \left(\frac{\operatorname{mra}}{l}\right) .
$$

Next, we consider equation (7.5.3), namely,

$$
T^{\prime}+a^{2} k T=0
$$

the solution of which is

$$
T(t)=\mathrm{Ce}^{-a^{2} t} .
$$

Substituting $a=(n r / D)$, we have

$$
T_{\mathbf{n}}(t)=C_{\mathrm{n}} e^{-(\mathrm{n} \pi / \|)^{\mathrm{E}} \mathrm{t}} .
$$

Hence, the nontrivial solution of the hest equation which satisfies the two boundary conditions is

$$
u_{n}(x, t)-X_{n}(x) T_{n}(t)-a_{n} e^{\left.-(n \pi /)^{2}\right)_{k t}} \sin \left(\frac{n \pi x}{l}\right), \quad n=1,2,3 \ldots
$$

where $a_{n}=B_{n} C_{n}$ is an artitrary constant.
By the principle of superposition, we obtain a formal series solution as

$$
\begin{align*}
\mathrm{w}(\mathrm{x}, \mathrm{t}) & =\sum_{\mathrm{n}=1}^{\infty} \mathrm{w}_{\mathrm{n}}(\mathrm{x}, \mathrm{t}), \\
& =\sum_{\mathrm{n}=1}^{\infty} \mathrm{a}_{\mathrm{n}} \mathrm{e}^{-\left(\mathrm{n} \pi / \mathrm{p}^{2} \mathrm{Et}\right.} \sin \left(\frac{n \pi x}{1}\right), \tag{7.5.4}
\end{align*}
$$

which satisfies the initial condition if

$$
u(x, 0)-f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{l}\right) .
$$

This holds true if $f(x)$ can be represented by a Fourier sine series with Fouricr coefficients

$$
\begin{equation*}
a_{\mathrm{n}}=\frac{2}{l} \int_{0}^{i} f(x) \sin \left(\frac{n \pi x}{l}\right) d x . \tag{7.5.5}
\end{equation*}
$$

Hence

$$
\begin{equation*}
u(x, t)=\sum_{n=1}^{\infty}\left[\frac{2}{l} \int_{0}^{i} f(r) \sin \left(\frac{n r \tau}{l}\right) d r\right] e^{-(n \pi / 4)^{2} k t} \sin \left(\frac{n r x}{l}\right) \tag{7.5.6}
\end{equation*}
$$

is the formal series solution of the heat conduction problem.

Example 7.5.1. (a) Suppose the initial temperature distribution is $f(z)=$ $z(1-z)$. Then, from equation (7.5.5), we have

$$
a_{n}=\frac{3 R^{2}}{n^{3} r^{3}}, \quad n=1,3,5, \ldots
$$

Thus, the solution is
(b) Suppose the temperature at one end of the rod is held constant, that is,

$$
u(t, t)=u_{0}, \quad t \geq 0 .
$$

The problem here is

$$
\begin{align*}
& \mathrm{m}_{4}=k \mathrm{~m}_{=}, \quad 0<x<1, \quad t>0, \\
& u(0, t)-0, \quad u(d, t)-w_{0}, \tag{7.5.7}\\
& u(x, 0)-f(x), \quad 0<x<l .
\end{align*}
$$

Let

$$
u(x, t)-v(x, t)+\frac{u_{0} x}{i} .
$$

Substitution of $u(x, t)$ in equastions (7.5.7) yields

$$
\begin{aligned}
u_{\mathrm{i}} & =k v_{\mathrm{rr}}, \\
v(0, t)=0, & v(l, t)-0, \\
v(z, 0) & -f(x)-\frac{u_{\mathrm{u}}}{l}, \quad 0<x<l
\end{aligned}
$$

Hence, with the knombedge of solution (7.5.6), we obtain the solution

$$
\begin{align*}
& \omega(x, t)=\sum_{n=1}^{\sin }\left[\frac{2}{l} \int_{0}^{1}\left(f(r)-\frac{\mathrm{Hg}_{\mathrm{g}} \tau}{l}\right) \sin \left(\frac{n \pi}{l}\right) d \tau\right] e^{-\left(\mathrm{nr} / \mathrm{H}^{2} \mathrm{EI}\right.} \sin \left(\frac{n \pi x}{l}\right) \\
& +\left(\frac{\operatorname{mos}}{l}\right) \text {. } \tag{7.5.6}
\end{align*}
$$

Theorem 7.6.1. (Uniqucneas Theorem) $L e t u(n, t)$ be a ontinwous differentiable fonction. If $u(\pi, t)$ athifies the differential equation

$$
w_{\mathrm{i}}=k u_{\mathrm{xx}}, \quad 0<z<1, \quad t>0
$$

the initial anditions

$$
\mathrm{u}(\mathrm{x}, \mathrm{0})-f(\mathrm{x}), \quad 0 \leq z \leq 1
$$

and the bundary conditions

$$
w(0, t)-0, \quad \pm(1, t)-0, \quad t \geq 0,
$$

then, the solation is unique.
Proof. Suppose that there are two distinct solutions $u_{1}(x, t)$ and $u_{2}(x, t)$. Let

$$
u(x, t)=\omega_{1}(x, t)-\omega_{2}(x, t) .
$$

Then,

$$
\begin{array}{rll}
u-k 0= & 0<x<t, & t>0, \\
v(0, t)-0, & u(t, t)-0, & t \geq 0, \tag{7.6.3}\\
u(x, 0)-0, & 0 \leq x \leq i, &
\end{array}
$$

Consider the function defined by the integral

$$
J(t)=\frac{1}{2 F} \int_{0}^{1} u^{2} d r .
$$

Differentisting with respoct to t, we have

$$
f^{\prime}(t)=\frac{1}{k} \int_{0}^{1} v \operatorname{sedr}-\int_{0}^{i} v n_{=x}^{d x}
$$

by virtue of equation (7.6.3). Integrating by parts, we have

$$
\int_{0}^{i} v u_{x} d x=\left[v u_{0}\right]_{0}^{1}-\int_{0}^{i} u_{n}^{2} d x .
$$

Since $u(0, t)=v(t, t)-0$,

$$
F(t)=-\int_{0}^{1} \mathrm{v}_{x}^{2} d x \leq 0 .
$$

From the condition $u(x, 0)=0$ we have $J(0)=0$. This condition and $J^{\prime}(t) \leq 0$ implies that $J(t)$ is a nonincreasing function of t. Thus,

$$
J(t) \leq 0 .
$$

But by definition of $J(t)$,

$$
J(t) \geq 0 .
$$

Hence,

$$
J(t)-0, \quad \text { for } t \geq 0 .
$$

Since $u(z, t)$ is continuous, $J(t)-0$ implies

$$
0(x, t)=0
$$

in $0 \leq a \leq 1, y 0$. Therefore, $u_{1}=W_{2}$ and the solution is unique.

Note: solve question 15 all parts from exercise

