Module: 2 chapter 7

7.3 The Vibrating String Problem

As a first example, me shall consider the problem of a vibrating string of constant tension T^{*} and density ρ with $c^{2}=T^{*} / \rho$ stretched along the z axis from 0 to l, fixed at its end points. We have seen in Chapter 5 that the problem is given by

$$
\begin{array}{rlrlr}
\mathrm{u}_{\mathrm{et}}-c^{2} u_{z r} & -0, & & 0<x<l, & \\
u(x, 0) & =f(x), & & 0 \leq x \leq l, \\
u(x, 0) & =g(z), & & 0 \leq x \leq l, & \\
u_{t}(x, y) & \\
u(0, t) & =0, & & & t \geq 0, \tag{7.S.5}\\
u(t, t) & =0, & & & t \geq 0,
\end{array}
$$

where f and g are the initial displacement and initial velocity respoctively.
By the method of esparation of varisbles, we asmue asolution in the Form

$$
\begin{equation*}
\Delta(x, t)-X(x) T(t) \neq 0 \tag{7.3.6}
\end{equation*}
$$

If we subatitute equation (7.3.6) into equation (7.5.1) we obtain

$$
X T^{\prime \prime}=e^{2} X^{\prime \prime} T
$$

and bence,

$$
\begin{equation*}
\frac{x^{\prime \prime}}{X}=\frac{1}{c^{2}} \frac{T^{\prime \prime}}{T^{\prime}} \tag{7.3.7}
\end{equation*}
$$

whenevar $X T$, 0 . Since the left side of equation (7.3.7) is independent of t and the right side is independent of x_{1} we mast have

$$
\frac{x^{\prime}}{X}=\frac{1}{e^{N}} \frac{T^{w}}{T}=\lambda
$$

where λ is a separstion oonstant. Thus,

$$
\begin{align*}
x^{\prime \prime}-\lambda X & =0 \tag{7.3.8}\\
T^{\prime \prime}-\lambda^{2} T & =0 \tag{7.5.9}
\end{align*}
$$

We now separate the boundary conditions. From equations (7.3.4) and (7.3.6), we obtain

$$
\mathrm{s}(0, t)-X(0) T(t)-0
$$

We know that $T(t)$; for sll slues of t, therefore,

$$
\begin{equation*}
x(0)=0 . \tag{7.3.10}
\end{equation*}
$$

In a similar manner, boundary condition (7.3.5) implies

$$
\begin{equation*}
x(t)-0 . \tag{7.3.11}
\end{equation*}
$$

Th determine $X(x)$ we first solve the cigenualue provem (eigenvalue problems are abo trested in Chapter 3)

$$
\begin{equation*}
x^{v}-\lambda x=0, \quad x(0)-0, \quad x(1)-0 \tag{7.3.12}
\end{equation*}
$$

We look for values of λ which gives us nontrivial solutions. We consider thres posible cases

$$
\lambda>0, \quad \lambda=0, \quad \lambda<0
$$

Cuse 1. $\lambda>0$. The general solution in this case is of the form

$$
X(x)=A e^{-\sqrt{\lambda} x}+B e^{\sqrt{\lambda} x}
$$

where A and B are arbitrary monstants. To sstisty the boundary conditions, we cmust have

$$
\begin{equation*}
A+B=0, \quad A e^{-\sqrt{\lambda}}+B e^{\sqrt{M}}=0 \tag{7.3.13}
\end{equation*}
$$

We see that the deteminent of the system (7.3.13) is diferent from zero. Consequently, A and B must both be wew, and hence, the general solution $X(x)$ is identically zero. The solution is trivial and hence, is no interest.

Case B. $\lambda-0$. Here, the general solution is

$$
X(z)-A+B z
$$

Applying the boundary conditions, we hawe

$$
A=0, \quad A+B l=0 .
$$

Hence $A-B=0$. The solution is thus identically zero.
Case $3 . \lambda<0$. In this cose, the general solution assumes the form

$$
X(x)=A \cos \sqrt{-\lambda} x+B \sin \sqrt{-\lambda} x .
$$

From the condition $X(0)=0$, we obtain $A=0$. The onntition $X(0)=0$ gives

$$
B \sin \sqrt{-\lambda}=0
$$

If $B=0$, the solution is trivial. For nontrivial solutions, $B \neq 0_{1}$ hence,

$$
\sin \sqrt{-\lambda}=0
$$

This equation is satisfied mhen

$$
\sqrt{-\lambda} i=n \pi \quad \text { for } \quad n=1,2,3, \ldots
$$

or

$$
\begin{equation*}
-\lambda_{n}-(n r / n)^{2} \tag{7.3.14}
\end{equation*}
$$

For this infinite set of discrete walues of λ_{1} the problem has a nontrivial solution. These values of $\lambda_{\text {s }}$ are called the cigenuaber of the problem, and the functions

$$
\sin (n \pi / h) x, \quad n-1,2,3, \ldots
$$

are the corresponding eigenfunctions.
We note that it is not neeessry to consider negative values of n since

$$
\sin (-n) \pi x / h=-\sin n r x / L
$$

No new solution is obtained in this way:
The solutions of problems (7.3.12) ste, therefore,

$$
\begin{equation*}
X_{\mathrm{n}}\left(x^{2}\right)=B_{\mathrm{n}} \sin (n \pi x / t) . \tag{7.3.15}
\end{equation*}
$$

For $\lambda=\lambda_{s}$, the general solution of equation (7.30) may be written in the form

$$
\begin{equation*}
T_{\mathrm{n}}(t)=C_{\mathrm{n}} \cos \left(\frac{n \pi c}{l}\right) t+D_{\mathrm{n}} \sin \left(\frac{n \pi c}{l}\right) t \tag{7.3.16}
\end{equation*}
$$

where C_{n} and D_{n} are arbitraty constants.
Thus, the functions

$$
\begin{equation*}
u_{n}(x, t)=X_{n}(x) T_{n}(t)-\left(a_{n} \cos \frac{n \pi c}{l} t+b_{n} \sin \frac{n \pi c}{l} t\right) \sin \left(\frac{n \pi r}{l}\right) \tag{7.3.17}
\end{equation*}
$$

satisfy equation (7.S.1) and the boundary sonditions (7.S.4) and (7.S.5), where $a_{n}=B_{n} C_{n}$ and $b_{n}=B_{n} D_{n}$.

Since equation (7.3.1) is linear and homogensous, by the superposition principle, the infrite series

$$
\begin{equation*}
w(r, t)=\sum_{n=1}^{\sin }\left(a_{n} \cos \frac{n \pi c}{l} t+b_{n} \sin \frac{n \pi c}{t} t\right) \sin \left(\frac{n \pi x}{l}\right) \tag{7.3.18}
\end{equation*}
$$

is also a solution, provided it oomerges and is twice continuously differentiable with repect to z and t. Sinee anch term of the series estisfos the boundary conditions (7.3.4) and (7.35), the series satisfies these conditicns. There remain two more initial conditions to be satisfied. From these conditions, we shall determine the constante a_{n} and b_{n}.

First we diferentiste the series (7.316) with respect to t. We have

$$
\begin{equation*}
u_{\mathrm{t}}=\sum_{n=1}^{\operatorname{mon}} \frac{n \pi c}{t}\left(-a_{n} \sin \frac{n \pi c}{t} t+b_{n} \cos \frac{n \pi e}{l} t\right) \sin \left(\frac{n \pi z}{t}\right) . \tag{7.3.19}
\end{equation*}
$$

Then applying the initial conditions (7.3.2) and (7.3.3), we obtain

$$
\begin{align*}
& u(x, 0)-f(x)=\sum_{n=1}^{\infty} a_{n} \sin \left(\frac{n \pi x}{l}\right), \tag{7.3.20}\\
& u_{t}(x, 0)-g(x)=\sum_{n=1}^{\infty} b_{n}\left(\frac{n \pi c}{l}\right) \sin \left(\frac{n \pi x}{l}\right) . \tag{7.3.21}
\end{align*}
$$

These equations mill be satisfied if $f(x)$ and $g(x)$ ann be represented by Fouriar sibe saries. The coefficients are given by

$$
\begin{equation*}
a_{n}=\frac{2}{l} \int_{0}^{1} f(x) \sin \left(\frac{n r x}{l}\right) d x, \quad b_{n}=\frac{2}{n \pi c} \int_{0}^{1} g(x) \sin \left(\frac{n r x}{l}\right) d x, \tag{7.3.22sb}
\end{equation*}
$$

Note: Solve question 1,2 and 3 of exercise

Erample 7.5.1. The Flucked String of length I

As a specisl ase of the problem just trested, ousider a stretched string Fixed at both ands. Suppose the string is raised to a height h at $x-a$ and then released. The string will oseillate fredy. The initial conditions, an shown in Figure 7.3 .2 , may be written

$$
\Delta(x, 0)-f(x)= \begin{cases}h z / a, & 0 \leq x \leq a \\ h(1-x) /(1-a), & a \leq x \leq 1\end{cases}
$$

Since $g(z)-0$, the coeflicients $b_{\text {n }}$ are identisally equal to zero. The coefticients a_{n}, aceording to equation (7.3.22a), are given by

$$
\begin{aligned}
a_{n} & =\frac{2}{l} \int_{0}^{1} f(x) \sin \left(\frac{n r x}{l}\right) d x \\
& =\frac{2}{l} \int_{0}^{a} \frac{h x}{a} \sin \left(\frac{n \pi x}{l}\right) d x+\frac{2}{l} \int_{a}^{1} \frac{h(l-x)}{(l-a)} \sin \left(\frac{n \pi x}{l}\right) d x
\end{aligned}
$$

Integration and simplifention yields

$$
a_{n}=\frac{2 h h^{2}}{\pi^{2} a(1-a)} \frac{1}{n^{2}} \sin \left(\frac{n \pi a}{1}\right) .
$$

Thus, the displocement of the plucted string is

$$
\omega(r, t)=\frac{2 h^{2}}{\pi^{2} a(l-a)} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi a}{l}\right) \sin \left(\frac{n \pi z}{l}\right) \cos \left(\frac{n \pi c}{l}\right) t
$$

Ezample 7.3.2. The struck string of length I
Here, we consider the string with no initial displacement. Let the string be struck at $x=a s 0$ that the initial velocity is given by

$$
u_{t}(x, 0)=\left\{\begin{array}{ll}
\frac{L_{1}}{a} x, & 0 \leq x \leq a \\
v_{0}(l-x) /(l-a), & a \leq x \leq l
\end{array} .\right.
$$

Since $u(z, 0)-0$, we have $a_{n}=0$. By applying equation (7.3.22b), we find that

$$
\begin{aligned}
b_{n} & =\frac{2}{n r c} \int_{0}^{a} \frac{v_{0}}{a} x \sin \left(\frac{n \pi z}{l}\right) d x+\frac{2}{n \pi c} \int_{a}^{l} v_{0} \frac{(l-z)}{(l-a)} \sin \left(\frac{n \pi x}{l}\right) d x \\
& =\frac{2 v l^{3}}{r^{3} c a(l-a)} \frac{1}{n^{3}} \sin \left(\frac{n \pi a}{l}\right) .
\end{aligned}
$$

Hence, the displacement of the struck string is

$$
u(z, t)-\frac{2 v_{0} l^{3}}{\pi^{3} c a(l-a)} \sum_{n=1}^{\infty} \frac{1}{n^{2}} \sin \left(\frac{n \pi a}{l}\right) \sin \left(\frac{n \pi z}{l}\right) \cos \left(\frac{n \pi c}{l}\right) t .
$$

Theorem 7.4.2. (Uniqueneas Theorem) There exista at mort one solation of the pave equation

$$
w_{\mathrm{ti}}=e^{2} u_{\mathrm{rr}}, \quad 0<z<t, \quad t>0
$$

satifying the intial sonditions

$$
\mathrm{u}(x, 0)-f(x), \quad w_{i}(x, 0)-g(x), \quad 0 \leq x \leq f,
$$

and the bundary onditions

$$
w(0, t)=0, \quad \omega(1, t)-0, \quad t \geq 0,
$$

where $u(x, t)$ is a tuiee continuousily differntiable fonction with respest to both x and t.

Prodf. Suppoes that there are two solutions u_{1} and w_{2} and let $u=u_{1}-\psi_{2}$. It con reanily be seen that $u(x, t)$ is the solution of the problen

$$
\begin{array}{rll}
u-c^{2} v_{z=}, & 0<z<t, & t>0, \\
v(0, t)-0, & t \geq 0 \\
u(1, t)-0, & t \geq 0, \\
u(x, 0)-0, & 0 \leq x \leq 1, & 0 \leq x \leq i .
\end{array}
$$

We shall prove that the function of $\left(x_{1}, t\right)$ is identically zero. To do so, consider the energy integral

$$
\begin{equation*}
E(t)-\frac{1}{2} \int_{0}^{i}\left(c^{2} u^{2}+u_{1}^{2}\right) d x \tag{7.4.10}
\end{equation*}
$$

which physically represents the total energy of the vibrating string at time t.

Since the function $v(x, t)$ is twice oontinuously diferentiable, we differentiate $E(t)$ with respect to t. Thus,

$$
\begin{equation*}
\frac{d E}{d t}=\int_{0}^{1}\left(c^{2} u_{x} u_{=i}+u_{4} u_{t}\right) d r \tag{7.4.11}
\end{equation*}
$$

Integrating the first integral in (7.4.11) by parts we bue

$$
\int_{0}^{1} e^{2} v_{x} u_{x} d x-\left[e^{2} u_{x} u_{i}\right]_{0}^{1}-\int_{0}^{1} e^{2} u_{4} u_{x=2} d x
$$

But from the oondition $u(0, t)-0$ we have $u_{i}(0, t)-0_{1}$ and similarly, $0(1, t)-0$ for $z-1$. Hence, the expression in the square bractete vinushes, and equation (7.4.11) beoomes

$$
\begin{equation*}
\frac{d E}{d t}=\int_{0}^{1} u_{i}\left(u_{4 i}-e^{2} v_{r x}\right) d x \tag{7.4.12}
\end{equation*}
$$

Since $\mathrm{w}_{\mathrm{E}}-\operatorname{pe}_{\mathrm{E}=}-\mathrm{a}_{1}$ equation (7.4.12) reduces to

$$
\frac{d E}{d t}=0
$$

which means

$$
E(t)-\text { constant }-Q \text {. }
$$

Since $u(x, 0)-0$ we have $u=(x, 0)-0$. Taking into pecout the oondi$\operatorname{tion} v_{1}(x, 0)-0$, we erohate Q to obtain

$$
E(0)-Q=\frac{1}{2} \int_{0}^{1}\left[c^{2} v^{2}+v_{t}^{2}\right]_{t=0} d x=0 .
$$

This implies that $E(t)-0$ which can happen only when $u=-0$ and $4-0$ For $t>0$. To satisfy both of there conditions, we must hove el($\mathrm{r}, \mathrm{t})=$ constant. Employing the condition $v(x, 0)-\overline{0}$, we then find $u(x, t)=0$. Therefore, $w_{1}(x, t)=v_{2}(x, t)$ and the solution $u(x, t)$ is unique.

