Lecture 2 — Maxwell’s Equations, EM wave

I CHARGE AND ENERGY

I The Continuity Equation

In this chapter we study conservation of energy, momentum. and angular momen-
tum, in electrodynamics. But I want to begin by reviewing the conservation of
charpe, because it is the paradigm for all conservation laws. What precisely does
conservation of charge tell us? That the total charge in the universe is constant?
Well, sure—that’s global conservation of charge. But local conservation of charze
is a much stronger statement: If the charge in some region changes, then exactly
that amount of charee must have passad in or out through the surface. The tiger

can’t simply rematerialize outside the cage; if it got from inside to outside it must
have slipped through a hole in the fence.
Formally, the charge in a volume V is

Q{n=f pir, D, B.1)
WV

and the cumrent Aowing out through the boundary S is :;!-’_5 J - da, so0 local conser-
vation of charpe savs
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Using Eq. 8.1 to rewrite the left side. and invoking the diverpence theorem on the
right, we have
a
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and since this is true for any volume, it follows that
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This is the Equation of Continuity (Mathematical Statement of local
conservation of Charge)




I Poynting’s Theorem

Work required to assemble a static distribution of charges is given as
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Work required to get the currents going on against the back emf is
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Therefore total energy stored in electromagnetic field s is given as
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Suppose we have some charge and current configuration which, at time ¢, pro-
duces fields E and B. In the next instant, df, the charees move around a bit
Chuestion: How much work, dW, is done by the electromagnetic forces acting
on these charges, in the interval 417 According to the Lorentz force law, the work
done on a charge g is

F.-dl=glE4+v=B)-vdi =gE-vdl.

In terms of the charee and current densities, § — pdr and pv — ],
So the rate at which work is done on all charges in a volume 7y is

AW
= L (E - J)dr. (.6)

Evidently E - J is the work done per unit time, per unit volume—which is to

say, the power delivered per unit volume. We can express this quantity in terms of
the fields alone, using the Ampére-Maxwell law to eliminate J:
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From product rule 6,
VIExB=B.(VxE)-E-(V xB).



Invoking Faraday's law (V = E = —aB/at), it follows that
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Putting this into Eq. 8.6, and applying the diverzence theorem (o the second
lerm, we have
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where 5 is the surface bounding V. This is Poynting’s theorem; it is the “work-
enerey theorem”™ of electrodynamics. The first inteeral on the right is the total
enerey stored in the fields, JI' il dr (Eq. §.5). The second term evidently represents
the rate at which energy is transported out of V, across its boundary surface, by the
electromagnetic fields. Povnting's theorem says, then, that the work done on the
charpes by the electromagnetic force is equal o the decrease in energy remaining
in the fields, less the energy thal flowed out through the surface.

The energy per wnit time, per unit area, transported by the fields is called the
Poynting vector:

= L{E;-:B:I. (.10}
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I Maxwells Equations
In the last section we put the finishing touches on Maxwell's equations:

I
(i} V-E =—p (Ganss’s law).
€
(u) Vv-B =0 (> name).
dB
(mi) v =xE= T (Faradav's Law),
_ dE - :
(iw) V xB=puJ+ “ﬂtﬂ'ﬁ (Ampere’s law with
Maxwell's correction).

Physical Significance of Maxwell’s Equations

By means of Gauss and Stoke’s theorem we can put the
field equations in integral form of hence obtain their physical
significance

1. Maxwell’s first equation is

V.D =p.
Integrating this over an arbitrary volume V we get
[yv.DdV =], pdV.

But from Gauss Theorem, we get
[sD.dS=JypdV=gq



Here, q is the net charge contained in volume V. S is
the surface bounding volume V. Therefore,

Maxwell’s first equation signifies that:
The total electric displacement through the surface enclosing
avolume is equal to the total charge within the volume.

2. Maxwell’'s second equations is

v.B=0
Integrating this over an arbitrary volume V, we get
lyv.B=0.

Using Gauss divergence theorem to change volume
integral into surface integral, we get
[sB.dS = 0.

Maxwell’s second equation signifies that:
The total outward flux of magnetic induction B through any
closed surface Sis equal to zero.

3. Maxwell’s third equation is

VXE=-0dB/dt.dS

Converting the surface integral of left hand side into line
integral by Stoke’s theorem, we get
Je E. dI =-[s aB/ét. dS.



Maxwell’s third equation signifies that:

The electromotive force (e.m.f. e = |c E.dI) around a closed
path is equal to negative rate of change of magnetic flux
linked with the path (since magnetic flux ® = [s B.dS).

4. Maxwell’s fourth equation is
VxH=J+dD/ot

Taking surface integral over surface S bounded by curve
C, we obtain
s VxH.dS =s (J + aD/at) dS

Using Stoke’s theorem to convert surface integral on
L.H.S. of above equation into line integral, we get
Jo H.dl = [s (J + aD/at).dS

Maxwell’s fourth equation signifies that:

The magneto motive force (m.m.f. = Je H. dl) around a closed
path is equal to the conduction current plus displacement
current through any surface bounded by the path.



