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458  Chapter 6 " Differentiation and Integration

(¢) Numerically verify the order of approximation using f(z) = Inz and zp = 2.

7. (a) Derive a f'ormula for approximating the first derivative of an arbitrary func-
tion at z = xq using four equally spaced points, with two (2) of those points
to the left and one (1) to the right of = .

(b) What is the order of approximation for the formla obtained in part (a)?
Completely justify your response.

8. (a) Derive a formula for approximating the first derivative of an arbitrary func-
tion at z = x4 by interpolating at £ = zg + h and £ = o — ah for a > 0.
(b) Show, analytically, that the formula from part (a) is second order when
a =1, but only first order for a # 1.

9. (a) Derive a formula for approximating the second derivative of an arbitrary
function at z = ¢ by interpolating at T = zg+ h, = zp and z = zo — ah
for > 0.

(b) Show, analytically, that the formula from part (a) is second order when

@ =1, but only-first order for o # 1.
N0 (a)

Using f(z) = Inz and zg = 2, demonstrate numerically that the central
difference approximation for the second derivative.given by

—-h)-2 + +h
f"(.’to) ~ f(l'[) - ) j’_E:::O) f(:z() )’
is second order accurate.
(b) Repeat part (a) using f(z) = €* and g = 0.

U\f Verify that each of the following difference approximations for the first derivative
_ provides the exact value of the derivative, regardless of h, for the functions
f(z) =1, f(z) =z and f(z) = 22, but not for the function f(z) =43

(a) f’(ro) —3f($o)+4f(z2n’:-h)——f(.‘tn+2h)

(b) ( ) ~ 3f(IO)_4f(IO2';lh)+f(10_2h)

T(Eoth)= (Es—h) ~

" f(=o
) ’(930) = 7 )
+ Verify that the second-order central difference approximation for the second
derivative provides the exact value of the second derivative, regardless of the

value of h, for the functions f(z) =1, f(z) = z, f(z) = z?, and f(z) =23, but
not for the function f(z) = i,

N ,],f (a) Use the formula

f’(xo) P f(-'-l?(] + h})l'_ f(zO)

to approximate the derivative of f(z) = 14z + 28 at o = 1, taking
h'=1,0.1,0.01, and 0.001. What is the order of approximation?
(b) Repeat part (a) for zo = 0. i

ai i t th lIts fr t dt
(c) Explain any difference between the results from part (a) mMm

PPN
\™ 14, (a) Use the formula '
/ fxo) = f(zo) - {L(IO —h)
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6.3 RICHARDSON EXTRAPOLATION

In the previous section several first- and second-order finite difference approxima-
tion formulas for first and second derivatives were obtained. Higher-order formulas
can of course be derived by interpolating miore data points, but an alternative for
obtaining higher-order approximnations is to use a procedure known as extrapola-
tion. The basic idea behind extrapolation is that whenever the leading term in
the error for an approximation formula is known, we can combine two approxi-
mations obtained from that formula using different values of the parameter h to

Section 6.3 - Richardson Extrapolation 459

to approximate the derivative of f(z) = sinz at 1y = =, taking h =
/l~,0.1,0.01, and 0.001. What is the order of approximation?
(b) Repeat part (a) for g = 7/2. .

(c) Explain any difference between the results from part (a) and those fromn

part4b). —
Consider the following formula for approximating the first derivative of an arbi-
trary function:

~2f(z0 — 3h) + 9f (2o — 2h) — 18f(z¢ - h) + 11f(z0)

f'(:ro) - Gh

+ ),

where o — 3h < £ < 0.

(a) Suppose that the function values used in the above formula contain round-
off/data errors that are bounded in absolute value by € and that the absolute
value of the fourth derivative is bounded by M. Derive a bound for the ap-
proximation error associated with the above formula as a function of €. M,

and h.

(b) Suppose € = 5.96 x 10~® (machine precision in IEEE standard single pre-
cision). Determine the value for the step size h that minimizes the bound
on the error when approximating the value of the derivative of f(z) = e" at
oo = 1.

Consider the second-order forward difference formula for approximating the first

derivative of an arbitrary function:

Flao) = —3/(5) + 4f(x021- h) = flzo +2h) :’]_;_thm(é),

wherg-tg < € < zg + 2h.
(a) that the function values used in the above formula contain round-
off /data errors that are bounded in absolute value by € and that the absolute

value of the third derivative is bounded by M. Derive a bound for the ap-

proximation error. associated with the above formula as a function of €, M,
amd h. :

(b) Suppose € = 1.11 x 107! (machine precision in IEEE standard double
precision). Determine the value for the step size h that minimizes the bound
on the error when approximating the value of the derivative of f(z) = Inz
at g = 2.
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